Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter.
نویسندگان
چکیده
Major intrinsic proteins (MIPs) are a family of membrane channels that facilitate the bidirectional transport of water and small uncharged solutes such as glycerol. The 35 full-length members of the MIP family in Arabidopsis are segregated into four structurally homologous subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic membrane proteins (NIPs), and small basic intrinsic proteins (SIPs). Computational methods were used to construct structural models of the putative pore regions of various plant MIPs based on homology modeling with the atomic resolution crystal structures of mammalian aquaporin 1 and the bacterial glycerol permease GlpF. Based on comparisons of the narrow selectivity filter regions (the aromatic/Arg [ar/R] filter), the members of the four phylogenetic subfamilies of Arabidopsis MIPs can be classified into eight groups. PIPs possess a uniform ar/R signature characteristic of high water transport aquaporins, whereas TIPs are highly diverse with three separate conserved ar/R regions. NIPs possess two separate conserved ar/R regions, one that is similar to the archetype, soybean (Glycine max) nodulin 26, and another that is characteristic of Arabidopsis NIP6;1. The SIP subfamily possesses two ar/R subgroups, characteristic of either SIP1 or SIP2. Both SIP ar/R residues are divergent from all other MIPs in plants and other kingdoms. Overall, these findings suggest that higher plant MIPs have a common fold but show distinct differences in proposed pore apertures, potential to form hydrogen bonds with transported molecules, and amphiphilicity that likely results in divergent transport selectivities.
منابع مشابه
Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, speci...
متن کاملGene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L.)
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae), an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene f...
متن کاملGenome Analysis The Complete Set of Genes Encoding Major Intrinsic Proteins in Arabidopsis Provides a Framework for a New Nomenclature for Major Intrinsic Proteins in Plants
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, the...
متن کاملThe complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants.
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, the...
متن کاملThe aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transpor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 135 2 شماره
صفحات -
تاریخ انتشار 2004